Calcium-activated potassium channel triggers cardioprotection of ischemic preconditioning.
نویسندگان
چکیده
We tested the hypothesis that the high-conductance calciumactivated potassium (K(Ca)) channel is involved in the cardioprotection of preconditioning with ischemic insults. In the isolated perfused rat heart subjected to ischemia/reperfusion, effects of ischemic preconditioning (IPC) on infarct size and lactate dehydrogenase (LDH) release were abolished by 1 microM paxilline (Pax), an inhibitor of the K(Ca) channel, administered 30 min before, but not during, ischemia. In isolated ventricular myocytes subjected to metabolic inhibition and anoxia (MI/A), preconditioning with MI/A increased their viability, and the effect was abolished by administering Pax before MI/A. Like IPC, 10 microM NS1619 (1,3-dihydro-1-[2-hydroxy-5-(trifluoromethyl)phenyl]-5-trifluoromethyl-2Hbenzimidazol-2-one; NS), an opener of K(Ca) channels, reduced infarct size and LDH release, effects attenuated by Pax. The harmful and protective effects of blockade and activation of the K(Ca) channel were accompanied by impaired and improved left ventricular contractile functions, respectively. In addition, the effect of NS was not altered by 100 microM 5-hydroxydecanoate, an inhibitor of the K(ATP) channel. Neither was the effect of 100 microM diazoxide, an activator of the K(ATP) channel, altered by Pax. Furthermore, opening of the mitochondrial permeability transition pore (mPTP) with 20 microM atractyloside abolished the beneficial effects of IPC or NS in the isolated rat heart and myocyte. Inhibition of mPTP opening with 0.2 microM cyclosporin A decreased the infarct size and LDH release and improved the contractile function, effects not attenuated by Pax. In conclusion, the study provides evidence that the K(Ca) channel triggers cardioprotection of IPC, which involves mPTP.
منابع مشابه
Cardiac Preconditioning by Anesthetic Agents: Roles of Volatile Anesthetics and Opioids in Cardioprotection
Cardiac preconditioning is the most potent and consistently reproducible method of protecting heart tissue against myocardial ischemia-reperfusion injury. This review discussed about the signaling and amplification cascades from either ischemic preconditioning stimulus or pharmacological preconditioning stimulus, the putative end-effectors and the mechanisms involved in cellular protection. The...
متن کاملEarly opening of sarcolemmal ATP-sensitive potassium channels is not a key step in PKC-mediated cardioprotection.
ATP-sensitive potassium (KATP) channels are abundantly expressed in the myocardium. Although a definitive role for the channel remains elusive they have been implicated in the phenomenon of cardioprotection, but the precise mechanism is unclear. We set out to test the hypothesis that the channel protects by opening early during ischemia to shorten action potential duration and reduce electrical...
متن کاملCardiac sodium/calcium exchanger preconditioning promotes anti-arrhythmic and cardioprotective effects through mitochondrial calcium-activated potassium channel.
BACKGROUND Reverse-mode of the Na(+)/Ca(2+) exchanger (NCX) stimulation provides cardioprotective effects for the ischemic/reperfused heart during ischemic preconditioning (IP). This study was designed to test the hypothesis that pretreatment with an inhibitor of cardiac delayed-rectifying K(+) channel (IKr), E4031, increases reverse-mode of NCX activity, and triggers preconditioning against in...
متن کاملInvestigating the role of acute and repeated stress on remote ischemic preconditioning-induced cardioprotection
Objective(s): To study the effect of acute and repeated stress on cardioprotection-induced by remote ischemic preconditioning (RIPC).Materials and Methods: RIPC was induced by giving 4 short cycles of ischemia and reperfusion, each consisting of five min. The Langendorff’s apparatus was used to perfuse the isolated rat hearts by subjecti...
متن کاملMitochondrial potassium transport: the role of the mitochondrial ATP-sensitive K(+) channel in cardiac function and cardioprotection.
Coronary artery disease and its sequelae-ischemia, myocardial infarction, and heart failure-are leading causes of morbidity and mortality in man. Considerable effort has been devoted toward improving functional recovery and reducing the extent of infarction after ischemic episodes. As a step in this direction, it was found that the heart was significantly protected against ischemia-reperfusion ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 312 2 شماره
صفحات -
تاریخ انتشار 2005